青岛版九年级数学上册《一元二次方程根的判别式》PPT教学课件,共12页。
教学目标
1.感悟一元二次方程的根的判别式的产生的过程;
2.能运用根的判别式,判别方程根的情况和进行有关的推理论证;
3.会运用根的判别式求一元二次方程中字母系数的范围.
新课引入
我们在运用公式法求解一元二次方程 ax2+bx+c = 0 (a≠0)时,总是要求b2-4ac≥0.这是为什么?
把方程ax2+bx+c = 0(a≠0) 配方后得到:
由于a≠0,所以4a²>0 ,因此我们不难发现:
我们把b²-4ac叫作一元二次方程ax2+bx+c = 0(a≠0)的根的判别式,记作“Δ”即Δ=b²-4ac
综上可知,我们不难发现一元二次方程 ax2+bx+c = 0(a≠0)的根的情况可由Δ=b²-4ac来判断.
例题:已知关于x的方程x2-2(k+1)x+k2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)求证:x=-1不可能是此方程的实数根.
课堂练习
1.一元二次方程x²-x+1=0 的根的情况为 ( )
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
2. 一元二次方程ax2+bx+c=0 (a ≠ 0) 有两个不相等的实数根,则b2-4ac满足的条件是 ( )
A.b2-4ac=0 B.b2-4ac>0
C.b2-4ac<0 D.b2-4ac≥0
... ... ...
关键词:一元二次方程根的判别式PPT课件免费下载,.PPT格式