《二次函数与一元二次方程》二次函数PPT教学课件
第一部分内容:学习目标
1.通过探索,理解二次函数与一元二次方程之间的联系.(难点)
2.能运用二次函数及其图象、性质确定方程的解.(重点)
3.了解用图象法求一元二次方程的近似根.
... ... ...
二次函数与一元二次方程PPT,第二部分内容:情境引入
问题 如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:
二次函数与一元二次方程的关系
(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
(4)球从飞出到落地要用多少时间?
从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?
一般地,当y取定值且a≠0时,二次函数为一元二次方程.
如:y=5时,则5=ax2+bx+c就是一个一元二次方程.
利用二次函数深入讨论一元二次方程
思考
观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2;
(2)y=x2-6x+9;
(3)y=x2-x+1.
由前面的结论,我们可以利用二次函数的图象求一元二次方程的根,由于作图或观察可能存在误差,由图象求得的根,一般是近似的.
例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).
解:作y=x2-2x-2的图象(如右图所示),它与x轴的公共点的横坐标大约是-0.7,2.7.
所以方程x2-2x-2=0的实数根为
x1≈-0.7,x2≈2.7.
... ... ...
二次函数与一元二次方程PPT,第三部分内容:当堂练习
1.根据下列表格的对应值:
判断方程 ax2+bx+c =0 (a≠0,a,b,c为常数)一个解x的范围是( )
A. 3< x < 3.23 B. 3.23 < x < 3.24
C. 3.24 <x< 3.25 D. 3.25 <x< 3.26
2.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2=_____;
能力提升
已知二次函数 的图象,利用图象回答问题:
(1)方程的解是什么?
(2)x取什么值时,y>0 ?
(3)x取什么值时,y<0 ?
... ... ...
二次函数与一元二次方程PPT,第四部分内容:课堂小结
二次函数与一元二次方程
二次函数与一元二次方程的关系
y=ax2+bx+c(a ≠0)当y取定值时就成了一元二次方程;ax2+bx+c=0(a ≠0),右边换成y时就成了二次函数.
二次函数与一元二次方程根的情况
关键词:人教版九年级上册数学PPT课件免费下载,二次函数与一元二次方程PPT下载,二次函数PPT下载,.PPT格式;